欧美国产日韩精品-欧美国产日韩久久久-欧美国产日韩一区二区三区-欧美国产日韩在线-台湾毛片-台湾美女古装一级毛片

網站首頁 公司簡介 新聞動態 誠聘英才 聯系我們  
產品系列
科研級光譜測試系統
科學級成像相機
表面分析測試系統
激光器和光源
FLIM 系統
時間控制系統
耗材材料
光束整形元件
特種鏡頭
光學平臺
光機配件
光鑷微操控系統
光學元件檢測與裝調設備
系統方案設計與服務
光學醫學檢測
教學演示儀器
欄目列表
新聞動態
公司產品
服務與支持
當前位置: 首頁 > 公司產品 > FLIM 系統 >

LIFA Widefield

作者: Kevin Peng    發布于: 2014-06-21 00:31    點擊:

Fast frequency-domain FLIM microscope attachment


The Lambert Instruments Fluorescence lifetime Attachment (LIFA) is a fast frequency-domain fluorescence lifetime imaging microscopy system compatible with Leica, Nikon, Olympus and Zeiss widefield fluorescence microscopes.

You can see the LIFA at one of our Test Centers.



The LIFA - Lambert Instruments Fluorescence lifetime Attachment - is a camera-based fast fluorescence lifetime imaging microscopy system that operates in the frequency domain and is compatible with Leica, Nikon, Olympus, TILL and Zeiss fluorescence microscopes.

The well-established homodyne detection technology together with the massive parallelism of the state-of-the-art intensified camera allows near instantaneous acquisition of full field lifetime images. The widefield system includes a Multi-LED modulated light source. Its high-power LEDs can be modulated in a broad frequency range, resulting in good lifetime sensitivity and high accuracy. The components of the LIFA are the TRiCAM modulated intensified CCD camera, a dual signal generator, and the LI-FLIM software package.

The LIFA is easy to install - within the hour - and very easy to operate. The LIFA is in addition well suited for high-content screening applications. The LIFA system has been judged "easy and highly quantitative" for a.o. FLIM-FRET studies.


Hardware features

  • Fast fluorescence lifetime imaging microscopy, up to two lifetime images per second
  • Non-phototoxic illumination offered by the Multi-LED (NEW)
  • Lifetime sensitivity 0-300 ns
  • Lifetime accuracy 30 ps r.m.s.
  • High quantum efficiency with the Gen III GaAs image intensifier (Optional)

Software features

  • FRET efficiency mapping
  • Time-lapses
  • Multi-frequency acquisition and analysis for separation of multiple lifetimes
  • Polar (Phasor) plot inspection and separation of multiple lifetimes
  • Easy integration into specialized image analysis pipelines through ActiveX
  • Export to Metamorph, ImageJ, Matlab
  • Images can be exported as BMP, TIFF
  • Statistics and histograms can be exported to MS Excel


Lambert Instruments provides the following LIFA models, which cover a wide range in spectral sensitivity and in lifetime sensitivity. Each model is based on a specific high-resolution Gen II or Gen III image intensifier, see also our fluorescence lifetime imaging microscopy properties of modulated intensifiers document.

Model

Photocathode

Modulation frequency

Lifetime sensitivity

LIFA Gen II S20 S20 1-120 MHz 0-300 ns
LIFA Gen II S25 S25 1-120 MHz 0-300 ns
LIFA Gen III GaAs GaAs 1-120 MHz 0-300 ns
LIFA X Gen II S20 S20 0-100 kHz, 1-120 MHz 0 ns - 1 ms
LIFA X Gen II S25 S25 0-100 kHz, 1-120 MHz 0 ns - 1 ms
LIFA X Gen III GaAs GaAs 0-100 kHz, 1-120 MHz 0 ns - 1 ms
LIFA P Gen II S20 S20 0-100 kHz 100 ns - 1 ms
LIFA P Gen II S25 S25 0-100 kHz 100 ns - 1 ms
LIFA P Gen III GaAs GaAs 0-100 kHz 100 ns - 1 ms
LIFA P Gen III GaAsP GaAsP 0-100 kHz 100 ns - 1 ms

 

Photocathode spectral sensitivity

Spectral sensivity as a function of wavelength for each of the photocathodes is shown below.

Spectral sensitivity of photocathodes

For more information, please refer to our technologies page on the operating principle of image intensifiers for lifetime imaging.

Options

 

Support for automated microscopes

Nikon Ti Eclipse.

Support for XYZ stages


The LIFA has the following applications:

  • Molecular interactions
  • Protein conformation
  • Biosensors
  • Oxygen concentration imaging in cells and tissue
  • NADH/FAD fluorescence dynamics
  • Viscosity imaging
  • Membrane dynamics
  • Membrane trafficking
  • LED inspection
  • Crude oil characterisation





Selected LIFA Publications

Abankwa, D., et al., The efficacy of Raf kinase recruitment to the GTPase H-ras depends on H-ras membrane conformer-specific nanoclustering, J Biol Chem. (2014)

Goedhart J. et al., Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%, Nature Communications (2012), 3:751

José Pena, E., et al.,Citrus psorosis and Mirafiori lettuce big-vein ophiovirus coat proteins localize to the cytoplasm and self interact in vivo, Virus Research (2012)

Byrne, R.D., et al., Dynamics of PLCγ and Src Family Kinase 1 Interactions during Nuclear Envelope Formation Revealed by FRET-FLIM, PLoS One. (2012), 7(7): e40669

Zhang, H., et al., Regulation of AMPA receptor surface trafficking and synaptic plasticity by a cognitive enhancer and antidepressant molecule, Molecular Psychiatry advance online publication 26 June 2012

Pereira, A.M., et al., Integrin-Dependent Activation of the JNK Signaling Pathway by Mechanical Stress, PLoS One. (2011), 6(12): e26182

Praus, A., et al., Cellular uptake of modified oligonucleotides enhanced by porphyrins studied by time-resolved microspectrofluorimetry and fluorescence imaging techniques, Journal of Molecular Structure 993 (2011) 316-318

Zhao Q, Young IT, de Jong JG., Photon budget analysis for fluorescence lifetime imaging microscopy, J Biomed Opt. 2011 Aug;16(8):086007

Klarenbeek, JB, A mTurquoise-Based cAMP Sensor for Both FLIM and Ratiometric Read-Out Has Improved Dynamic Range, PLoS One. 2011 Apr 29;6(4):e19170

Dragavon J, et al., Fluorescence lifetime imaging to quantify sub-cellular oxygen measurements in live macrophage during bacterial invasion, Proc. SPIE 7910, 791019 (2011); doi:10.1117/12.875430

Svensson FR, et al., Ruthenium(II) Complex Enantiomers as Cellular Probes for Diastereomeric Interactions in Confocal and Fluorescence Lifetime Imaging Microscopy, J. Phys. Chem. Lett. (2011) 2:397–401

Huntosova V., et al., Interaction dynamics of hypericin with low-density lipoproteins and U87-MG cells, International Journal of Pharmaceutics 389 (2010) 32-40

Vos MJ, et al., HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones, Human Molecular Genetics (2010) 19(23):4677-93 Kozer, N., et al., Creation and biophysical characterization of a high-affinity, monomeric EGF receptor ectodomain using fluorescent proteins, Biochemistry (2010) 49(35):7459-66

Hageman, J., et al., A DNAJB Chaperone Subfamily with HDAC-dependent Activities Suppresses Toxic Protein Aggregation. Molecular Cell (2010) 37(3):355-69

Abankwa D, et al., Ras membrane orientation and nanodomain localization generate isoform diversity. Proc Natl Acad Sci (2010) 107(3):1130-5

Bastiani M, et al., MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J Cell Biol (2009) 185(7):1259-73

Aymeric Leray A., et al., Optimized protocol of a frequency domain fluorescence lifetime imaging microscope for FRET measurements, Microscopy Research and Technique (2009) 72(5) 371-379

Hafrén J., et al., Fluorescence lifetime imaging microscopy study of wood fibers. J Wood Sci (2009) 55(3) 236-239

Schlachter S., et al., mhFLIM: Resolution of heterogeneous fluorescence decays in widefield lifetime microscopy. Optics Express (2009) 17(3):1557-70

Valdembri D, et al., Neuropilin-1/GIPC1 signaling regulates alpha5beta1 integrin traffic and function in endothelial cells. PLoS Biol. (2009) 27:7(1):e25

Gadella TW Jr., FRET and FLIM techniques, 33. Imprint: Elsevier, ISBN-13: 978-0-08-054958-3. (2008) 560 pages

Langel FD, et al., Multiple protein domains mediate interaction between Bcl10 and Malt1, J. Biol. Chem., (2008) 283(47):32419-31

Clayton AH. , The polarized AB plot for the frequency-domain analysis and representation of fluorophore rotation and resonance energy homotransfer. J Microsc. (2008) 232(2):306-12

Clayton AH, et al., Predominance of activated EGFR higher-order oligomers on the cell surface. Growth Factors (2008) 20:1

Plowman et al., Electrostatic Interactions Positively Regulate K-Ras Nanocluster Formation and Function. Molecular and Cellular Biology (2008) 4377–4385

Belanis L, et al., Galectin-1 Is a Novel Structural Component and a Major Regulator of H-Ras Nanoclusters. Molecular Biology of the Cell (2008) 19:1404–1414

Van Manen HJ, Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy. Biophys J. (2008) 94(8):L67-9

Van der Krogt GNM, et al., A Comparison of Donor-Acceptor Pairs for Genetically Encoded FRET Sensors: Application to the Epac cAMP Sensor as an Example, PLoS ONE, (2008) 3(4):e1916

Dai X, et al., Fluorescence intensity and lifetime imaging of free and micellar-encapsulated doxorubicin in living cells. Nanomedicine. (2008) 4(1):49-56

Elder A, et al., Theoretical investigation of the photon efficiency in frequency-domain fluorescence lifetime imaging microscopy. J Opt Soc Am A Opt Image Sci Vis. (2008) 25(2):452-62.

Berdiev BK, et al., Molecular proximity of CFTR and ENaC assessed by fluorescence resonance energy transfer, J. Biol. Chem., (2007) 282(50):36481-88

Domingo B, et al., Imaging FRET standards by steady-state fluorescence and lifetime methods, Microsc Res Tech. (2007) 70(12):1010-21

Matthews SM, et al., Quantitative kinetic analysis in a microfluidic device using frequency-domain fluorescence lifetime imaging, Anal Chem. (2007) 79(11):4101-9

Tian T, et al., Plasma membrane nanoswitches generate high-fidelity Ras signal transduction, Nat Cell Biol. (2007) 9(8):905-14

Clayton AHA, et al., Unligated epidermal growth factor receptor forms higher order oligomers within microclusters on A431 cells that are sensitive to tyrosine kinase inhibitor binding. Biochemistry (2007) 46(15):4589-97

Elder AD, et al, Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources, Journal of Microscopy (2006) 224(Pt2):166-80

Elder AD, et al., Application of frequency-domain Fluorescence Lifetime Imaging Microscopy as a quantitative analytical tool for microfluidic devices, Optics Express (2006) 14:5456-5467

Dai X, et al., A spectroscopic study of the self-association and inter-molecular aggregation behaviour of pH-responsive poly(l-lysine iso-phtalamide), Polymer (2006) 47(8):2689-2698

Clayton AHA, et al, Ligand-induced dimer-tetramer transition during the activation of the cell surface epidemal growth factor receptor-a multidimensional microscopy analysis, Journal of Biological Chemistry (2005) 280(34):30392-30399

Van Rheenen J, et al.,PIP2 signaling in lipid domains: a critical re-evaluation, The EMBO Journal (2005) 24(9):1664–1673

Hanley QS and Clayton AHA, AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers, Journal of Microscopy (2005) 218(1):62-7

Zwart W, et al., Spatial separation of HLA-DM/HLA-DR interactions within MIIC and phagosome-induced immune escape, Immunity (2005), 22(2):221-233

Ponsioen B, et al., Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator, EMBO reports (2004) 5(12):1176–1180

May M, An easy upgrade to fluorescence lifetime imaging, BioPhotonics International (2004) 20-21

Stoop KWJ, et al., Measuring FRET in living cells with FLIM, 8th Chinese Peptide Symposium, Kunming China, (2004) July 3-6

Van Geest LK and Stoop KWJ, FLIM on a wide field fluorescence microscope, Letters in Peptide Science (2003) 10(5-6):501-510

|關于我們|聯系方式|客戶留言|服務與支持|相關知識|友情鏈接|
Copyright © 2013-2022 FredorScience. 弗銳達科技 版權所有 滬ICP備13044418號-1
黄视频网站在线观看| 色综合久久久久综合体桃花网| 精品久久久久久中文字幕2017| 九九精品在线| 亚久久伊人精品青青草原2020| 国产一区二区精品久久91| 国产一区二区精品| 国产精品1024在线永久免费| 成人a大片高清在线观看| 精品国产三级a∨在线观看| 国产一区二区精品久久| 亚久久伊人精品青青草原2020| 欧美另类videosbestsex高清 | 成人免费网站久久久| 国产原创中文字幕| 久久国产精品自由自在| 亚洲 男人 天堂| 国产福利免费视频| 四虎影视库国产精品一区| 日韩一级黄色片| 久久国产精品自由自在| 日韩免费在线| 久久久成人影院| 黄视频网站在线免费观看| 精品久久久久久免费影院| 999久久狠狠免费精品| 四虎久久影院| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 亚洲精品永久一区| 日韩中文字幕一区| 你懂的国产精品| 亚欧乱色一区二区三区| 成人a大片在线观看| 青青青草影院 | 你懂的福利视频| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 高清一级毛片一本到免费观看| 色综合久久久久综合体桃花网| 日日日夜夜操| 天天做日日爱| 香蕉视频久久| 欧美激情在线精品video| 欧美国产日韩久久久| 国产福利免费视频| 久久精品人人做人人爽97| 高清一级毛片一本到免费观看| 99热精品一区| 日韩av成人| 91麻豆高清国产在线播放| a级毛片免费全部播放| 亚飞与亚基在线观看| a级毛片免费全部播放| 韩国三级香港三级日本三级la| 成人影视在线播放| 一级女性全黄久久生活片| 国产网站在线| 久草免费在线视频| 精品久久久久久中文字幕一区| 国产精品自拍一区| 九九精品在线| 久久福利影视| 日韩av片免费播放| a级毛片免费观看网站| 天天做人人爱夜夜爽2020 | 国产精品自拍在线观看| 青青久在线视频| 日本免费乱理伦片在线观看2018| 国产成a人片在线观看视频| 精品在线观看一区| 一级毛片看真人在线视频| 99久久精品国产麻豆| 日韩中文字幕在线观看视频| 精品国产亚一区二区三区| 99久久精品费精品国产一区二区| 国产伦久视频免费观看视频| 免费国产在线观看| 精品国产三级a∨在线观看| 韩国妈妈的朋友在线播放| 国产一区二区精品久久| 日韩一级黄色片| 国产成+人+综合+亚洲不卡| 一级片片| a级毛片免费观看网站| 韩国三级一区| 91麻豆国产| 色综合久久天天综合观看| 久草免费在线观看| 国产网站在线| 日韩中文字幕在线亚洲一区 | 国产成人精品影视| 欧美激情影院| 欧美国产日韩精品| 99久久精品国产麻豆| 亚洲精品中文一区不卡| 一 级 黄 中国色 片| 国产国语对白一级毛片| 亚洲爆爽| 亚洲爆爽| 欧美激情中文字幕一区二区| 国产精品1024在线永久免费| 美女免费精品高清毛片在线视 | 高清一级做a爱过程不卡视频| 99热精品一区| 国产一区二区精品| 成人av在线播放| 久久久久久久男人的天堂| 精品视频一区二区| 日韩在线观看免费| 国产网站免费视频| 精品视频在线观看一区二区三区| 国产成人精品综合在线| 精品毛片视频| 天天做人人爱夜夜爽2020 | 日韩欧美一二三区| 日日夜人人澡人人澡人人看免| 日韩男人天堂| 欧美一级视频免费| 亚洲精品久久玖玖玖玖| 国产精品免费久久| 精品国产一区二区三区精东影业| 午夜在线影院| 日韩中文字幕在线播放| 可以免费看污视频的网站| 尤物视频网站在线观看| 日韩一级精品视频在线观看| 欧美国产日韩一区二区三区| 韩国毛片免费大片| 999久久狠狠免费精品| 午夜在线亚洲| 精品国产亚洲一区二区三区| 国产一区二区精品尤物| 欧美爱色| 深夜做爰性大片中文| 国产成人精品综合久久久| 深夜做爰性大片中文| 天天做日日爱| 欧美激情在线精品video| 一级女人毛片人一女人| 国产韩国精品一区二区三区| 99久久精品国产麻豆| 精品久久久久久中文字幕一区| 欧美大片毛片aaa免费看| 99久久精品国产免费| 九九九网站| 欧美激情伊人| 香蕉视频一级| 精品视频一区二区| 亚洲 男人 天堂| a级精品九九九大片免费看| 精品视频在线看| 免费的黄视频| 青草国产在线| 久久精品店| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 黄色福利片| 国产综合91天堂亚洲国产| 午夜家庭影院| 91麻豆爱豆果冻天美星空| 精品视频一区二区三区免费| 色综合久久手机在线| 久久精品欧美一区二区| 国产麻豆精品hdvideoss| 亚洲第一色在线| 精品国产亚洲一区二区三区| 91麻豆高清国产在线播放| 精品国产香蕉在线播出| 久久99这里只有精品国产| 久久国产精品只做精品| 成人影院一区二区三区| 九九干| 欧美激情一区二区三区视频 | 91麻豆爱豆果冻天美星空| 一级女性全黄久久生活片| 亚洲www美色| 色综合久久天天综合| 欧美大片一区| 黄视频网站免费看| 99久久精品国产高清一区二区| 国产不卡在线观看| 国产精品免费久久| 色综合久久久久综合体桃花网| 日韩中文字幕一区二区不卡| 久久精品道一区二区三区| 天堂网中文在线| 免费毛片基地| 国产不卡精品一区二区三区| 韩国三级视频网站| 欧美1区| 国产亚洲精品aaa大片| 成人免费观看的视频黄页| 四虎影视久久久| 亚洲精品久久久中文字| 亚洲精品影院| 香蕉视频三级| 香蕉视频一级| a级毛片免费观看网站| 国产精品123| 一 级 黄 中国色 片| 成人影院久久久久久影院|